Gun Detection Algorithm

Collage of handgun images

Templates – Take 1

Gun Template – Take 1

Scale = 0.167. Number of matches = 12.

Scale = 0.333. Number of matches = 52.

Scale = 0.5. Number of matches = 123.

Scale = 1. Number of matches = 402.

Gun Template – Take 2.

Narrow formulation: looking for black handgun barrels

Calculate average image intensity (S) in each of the 9 rectangles and compare it between 8 peripheral and the middle rectangle. The difference has to be greater than threshold (T).

Rejection happens as early as possible.

Rectangle Averages through Integral Image (Viola-Jones)

Definition: The value of the integral image at point (x, y) is the sum of all pixels of the original image above and to the left. The integral image is pre-computed once for all further analysis.

The sum (S) of pixels within rectangle D can be computed with four references into the integral image (I).

$$S_D = I_4 + I_1 - I_2 - I_3$$

Zooming Gun Template

Images for Testing

Urban Carry G2 • Incredible Concealed Carry Holster by Urban Carry Holsters

Urban Carry Holsters

Urban Carry Holsters

Urban Carry Holster

https://www.youtube.com/watch?v=MqRZ- zRFsU

https://www.youtube.com/watch?v=pkRofcvfnHg

https://www.youtube.com/watch?v=dBllnaSKVfQ

https://www.youtube.com/watch?v=VAedmsJ-Fb0

Our approach vs. Viola-Jones

Our method (for guns)	Viola-Jones (for faces)
Template consists of as many rectangles as needed.	Each feature is computed on two rectangles.
Variations of objects are detected by different templates. Accepts only tight matches.	Removes wrong candidates in successive cascades of classifier.
Low false-positive. Moderate false negative (improved by adding templates).	High false-positive (improved by cascade). Low false negative.
Slower to execute (as of now).	Faster to execute.
No image library is needed and there is no training.	Needs large library of images for training.

zoom = 4; thresh = 70; step = 2; template = zoom * form_template_9 (3, 12, 10); matches = match_template (img, template, thresh, step); cluster = cluster_template (matches);

Several matches are detected for the same object, which are then combined into a single cluster.

AN INSTANT AZEN ATTACK ON POLITICIAN

Clusters from different template zoom are shown in colors ———

Loop by: zoom thresh step

3 70 2 4 70 2


```
zoom = 6;
thresh = 80;
step = 3;
template = zoom * form_template_9 (3, 12, 10);
matches = match_template (img, template, thresh, step);
cluster = cluster_template (matches);
```

Several matches are detected for the same object, which are then combined into a single cluster.

Loop by:	zoom	thresh	step	Loop by:	zoom	thresh	step
	6	80	3	Clusters Com di Consut	5	80	3 (this zoom generates 2 false-positives)
	7	80	3	Clusters from different	6	80	3
	8	80	3	template zoom are shown	7	80	3
				in colors	8	80	3


```
zoom = 2;
thresh = 57;
step = 2;
template = zoom * form_template_9 (3, 12, 10);
matches = match_template (img, template, thresh, step);
cluster = cluster_template (matches);
```

Several matches are detected for the same object, which are then combined into a single cluster.

Loop	by:	zoom	thresh	step
		1.75	55	1
		2	57	2
		2.5	65	2

Clusters from different template zoom are shown in colors

 zoom
 thresh
 step

 1.5
 50
 1 (this zoom generates 2 false-positives)

 1.75
 55
 1

 2
 57
 2

 2.5
 65
 2

Example 4 (1)


```
zoom = 2;
thresh = 57;
step = 2;
template = zoom * form_template_9 (3, 12, 10);
matches = match_template (img, template, thresh, step);
cluster = cluster_template (matches);
```

Several matches are detected for the same object, which are then combined into a single cluster.

Example 4 (2)

2.5 65

Example 4 (3)

Loop by:	zoom	thresh	•	
	1.5	50	1 This zoom gener	rates 2 false-positives (not counting false-positives generated by text superimposed on image)
	1.75	55	1	
	2	57	2	Clusters from different template zoom are shown in colors
	2.5	65	2	

Several matches are detected for the same object, which are then combined into a single cluster.

WOLF

Clusters from different template

zoom are shown in colors

Loop by: zoom thresh step 7 63 3

8 65 3 9 65 3

Example 6 – Using Sequences of Images


```
scale = 0.5;
zoom = 1;
thresh = 70;
step = 1;
template = zoom * form_template_9 (6,12,6);
matches = match_template (img, template, thresh, step);
cluster = cluster_template (matches);
```

Sometimes it is hard to eliminate false positives. Analyzing motion can provide a solution.

Example 6 – Optical Flow

Example 6 – Finding Guns in Areas of Motion

Range of Parameters

Zoom	1-1.5	2-2.5	>=3
Threshold	~50	50-60	70-80
Step	1	2	>2

Conclusion

- The algorithm can handle rotation within +/-10 degrees, but results are more reliable when barrel is horizontal.
- Need to know the approximate scale, either from the distance between the camera and the object, or derived from the image by independent means.
- Matches with different zoom can be used for confirmation of finding.
- Speed?
- Stability with parameters?
- This algorithm was fast to develop and used a minimal image library.

Next Steps

- Include rotation +/- 20 degrees.
- Analyze shape of candidate objects to reduce false positives and allow more freedom in setting parameters.
- Leverage existing methods based on learning, e.g., use proximity to head/upper body/ face.
- Create templates for other types and colors of guns.
- Perform preprocessing (contrasting, color correction) to improve gun detection